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Background

Current state-of-the-art quantum computing processors typically employ between 50-250 qubits. This is far
below what is needed for fault-tolerant error correction on the scale required for a useful quantum advantage;
even with a gate error of only ∼ 0.01%, factoring a 1000-bit number using Shor’s algorithm would still involve
millions of physical qubits [1]. Instead, recent emphasis has been placed on finding algorithms which can run
in the so-called noisy intermediate-scale quantum (NISQ) regime [2].

Typically, NISQ algorithms work by moving part of the computation to a classical computer, while leaving
a reduced-depth quantum circuit to carry out the most demanding tasks. Early applications primarily focused
on quantum simulations (most notably, computational quantum chemistry [3, 4, 5]), approximate optimization
algorithms [6], and then later quantum machine learning (QML). A review of the current state of the art can
be found in [7]. Perhaps the best known example of these is the variational quantum eigensolver (VQE) [3],
used for finding ground-state energies of interacting quantum systems. This involves minimising a cost function,
defined as 〈H〉, over a parameterised set of states using a classical optimiser. As the expectation values can be
computed efficiently on a quantum computer, then for suitable parameterisations of the trial states, the VQE
can iteratively find the ground state using a polynomial number of operations.

For NISQ systems, where the error rates are higher than the threshold for error correction, the priority is
instead to focus on quantum error mitigation (QEM) rather than full-scale fault tolerance. Here, a number of
techniques for short-depth circuits have been put forward, e.g. by artificially increasing noise in a sequence of
runs and then extrapolating to the zero-noise limit (ZNE), or by decomposing an ideal circuit in a noisy basis
[8, 9]. In particular, QEM should 1) not require too many additional quantum resources, and 2) not increase
the circuit depth beyond the coherence time, i.e. inasmuch as possible, it should avoid any sources of unwanted
noise. However, in most cases the circuit depth is not actively decreased, and there has been limited work
towards developing general approaches in this direction.

Recently, we have demonstrated that reinforcement learning algorithms can find low gate circuit approxi-
mations for arbitrary state generation. In real NISQ computers, these turn out to perform better, on average,
than exact circuits as the accuracy improvement of the ML approximation (as a function of circuit depth)
quickly exceeds the typical gate error. Similar trade-offs also exist at the level of individual gate operations,
where accepting a small, known, error can sometimes offset higher levels of unwanted noise. This suggests that
ML-optimised circuits can provide a promising avenue for quantum error mitigation in NISQ computers.

Research goals and working programme

The goal of this project is to explore the use of hybrid (quantum-classical) machine learning approaches in real
quantum processors. In particular, we aim

1. to investigate the performance limits which can be achieved, in principle, for both general and NISQ
algorithms using approximate circuits on small qubit systems, and

2. to develop scalable approaches to error mitigation using hybrid machine learning.

In the first stage of the project, we will extend our existing algorithm (Fig. 1) to include a comprehensive
noise model of a real-world system. A prime example would be the cloud-based quantum computers provided
by IBM or Xanadu. Our goal is to investigate how well one can optimise the state-generation task by algorithm
choice alone. Similar techniques can then be applied to the approximation of general circuits (i.e. of arbitrary
unitary operators). Already, we have found evidence that some hardware restrictions (e.g. system architectures)
can be better dealt with using this holistic approach rather than the available circuit transpilers. However, it
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seems clear that the noise characterisations typically published by system providers are insufficient to fully model
performance. Thus, additional levels of sophistication may be required. Once a baseline has been achieved, we
will then try to further limit noise through a variety of QEM techniques. Of particular interest is whether new
approaches can be learnt using classical neural networks.

For small systems, both circuit approximation and quantum error mitigation can be modelled entirely using
classical resources. In the second stage, we aim to find scalable implementations of the algorithm. The most
obvious approach is to use some form of QML (in the hybrid sense). However, if noise mitigation is learnt on
single qubits (or at least small subsets of qubits at a time), then these should be already inherently scalable,
and one can directly apply them to existing NISQ algorithms.

The project supervisor in Rostock, Prof. Stefan Scheel, has a long-standing expertise in theoretical quantum
optics and quantum information. The Canadian partner, Prof. Barry Sanders in Calgary, complements that
with his expertise in classical and quantum machine learning. While the project is anchored in Rostock, the
successful applicant is expected to spend between 6-12 months at the University of Calgary.

Figure 1: An example reinforcement algorithm approach to arbitrary state generation. Here a DQN agent is
trained to choose a gate type (e.g. CNOT, or rotation), while a local optimiser finds the ideal parameter value.
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